《找次品》教案

时间:2025-12-19 08:00:06
《找次品》教案

《找次品》教案

作为一名无私奉献的老师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。教案要怎么写呢?下面是小编帮大家整理的《找次品》教案,仅供参考,大家一起来看看吧。

《找次品》教案1

一、创设情境,生成问题

(初步认识“找次品”的基本原理)

1.创设情景,自主探索。

(1)出示钙片,提出问题:这里有3瓶钙片,其中有一瓶少了3片,你能用什么办法把它找出来吗?(2)独立思考。教师鼓励大胆设想,积极发言。(3)全班汇报。

教师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么称来称)、用天平称(教师不急于让学生说出最佳方案,给全班学生留出思考空间,但是可帮助发言学生阐述天平的工作原理和特点:天平大家都见过吗?有两个托盘,如果两个托盘里的物品重量相等,天平就保持平衡,如果不相等,重的一端就会……轻的一端就会……)。

2.自主探索用天平找次品的基本方法。

(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?

(2)独立思考,有一定思维结果的时候组织小组交流。教师指导交流方法:一个一个地讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚……

(3)全班汇报。一个一个地称出重量(利用砝码);利用推理(教师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?)……

教师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用砝码称出每瓶的重量再进行比较;还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的:如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端的是少的。

3.揭示课题。

师:综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)

师:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做“找次品”。(板书课题:找次品)接下来我们再请天平来帮帮忙。

二、探索交流,解决问题

㈠初步认识“找次品”的基本解决手段和方法(教学例1)

1.创设情境,出示问题,引导学生利用学具自主探索。

现在有5瓶钙片,其中有一瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替钙片,想象一下,怎样找出少了的这瓶?

⒉ 独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。

⒊ 全班汇报。 较复杂的方法教师帮助板书示意图。

教师在引导语中强调全面考虑可能出现的结果:怎么找?可能出现什么情况?说明什么?

⒋ 对几种方法的梳理、比较:“分成几份?每份数量是多少?至少需要称几次就一定能找出来?

⒌ 教师小结:在天平的帮助下找到这瓶钙片有多种方法,可以……还可以……。除了利用学具,还可以画出这样的示意图来帮助我们思考。

㈡解决9个零件问题,归纳出找次品的最优方法(教学例2)

1.出示问题:有9个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?

教师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品。

2.自主探索。

小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。出示小组合作注意事项:

(1)首先一个同学说出自己的'做法,其余的同学认真倾听,如果听的不是很明白,等他说完以后再提出质疑,如果你和他意见相同就不必重复发言。如果意见不同就可以再说出自己的想法。

(2)当组员说的过程中小组长要认真做好记录,把不同的方法记录在老师发的表格里。

零件个数分成的份数每份的个数至少称几次就一定能找出这个次品

教师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证找出次品?提示学生把可能出现的结果考虑全面。

⒊ 全班汇报。教师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?根据学生的回答板书并填表汇总:

零件个数分成的份数每份的个数至少称几次就一定能找出这个次品

93 4,4,1 3

9 33,3,3 2

9 4 2,2,2,2,1 3

9 9 1,1,1,1,1,1,1,1,1 4

⒋ 教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

小结:把9个零件分成3部分,并且平均分,能够保证找出次品而且称的次数最少。

㈢推测多个零件找次品的解决办法

⒈ 提出猜测:那么,是否在所有的找次品问题中,这样平均分成3份的方法能保证找出次品而且所需次数一定最少呢?我们来猜一猜。学生猜测。

⒉ 要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

学生汇报:3次。

我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 2 8)(3 3 6)(5 5 2)(6 6)……

学生选择一种分法在纸上进行分析。

全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

⒊ 小结:

师:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。(板书:待测物品三份分,能均分的要均分)。

三、巩固应用、内化提高

⒈ 完成P136练习二十六的第1题

分析:因总数为9筐,故可平均分成3份,只称2次就能把吃过后那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证3次就一定能称出来,故该方法不是最优的。

⒉ 完成P136练习二十六的第2题:

有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?独立思考,在纸上进行分析。

……此处隐藏28685个字……盖茨的公司应聘好吗?八十一能平均分成三份吗?我们应该怎么办?自己完成。呼应猜测。

【设计意图:应用回归】

四、回顾整理内化提升

让学生说收获,生自由说。老师总结:

【设计意图:让学生明白数学学习方法,数学思想,探究思路是一生的财富。】

《找次品》教案15

教学目标

1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。

2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

3.培养学生的合作意识和探究兴趣。

教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

教学难点:观察归纳“找次品”这类问题的最优策略。

教学过程

(一)创设情境,导入新课

【课件播放有关次品的视频】

师:看了刚才那段视频,你们有什么想说的?

生自由回答。

师:生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板贴:次品。)

师:次品虽小,危害却大。今天咱们就一起去找轻重不合格的次品。(板贴:找。)

师:要找轻重不合格的次品,我们要用到什么工具?(天平)

(二)探究新课

1.有关比尔·盖茨与81个玻璃球的问题

【课件出示小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】

让生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,让我们从数量较小的来研究吧!

2.研究2个球

【课件演示:把2个球放在天平上】

师:有2个玻璃球,其中有一个球比正常的球稍重,如果只能利用天平来测量,怎样可以找出次品呢?

师:如果次品比正常的球稍轻呢?

3.讨论3个球的问题

【课件:这儿有3个玻璃球,其中有一个球比其他的球稍重,如果只能利用天平来测量,至少要称多少次才能保证找出来呢?】

生叙述称球的过程。

【课件再次演示过程,并板书枝状图。 】

师:次品可能是这三个“1”中的任意一个,但无论哪一个是次品,都只需要一次就可以保证找出次品了。

师将探究结果填入记录表中。

4.研究4个球的问题

【课件:这儿有4个玻璃球,其中有一个球比其他的球稍重,如果只能利用没天平来测量,至少要称多少次才能保证找出来呢?】

师:如果再增加一个球,4个球,一次可以保证找出次品吗?

生自由回答。

师:咱们还是动手去探究吧。

【课件出示如下小组活动要求。(1)四人一组,用棋子代替玻璃球,用尺子代替天平,摆一摆。(2)4个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)想一想,你们组的.方法是否既做到了“至少”,也做到了“保证”?】

生分组探究后,上实物展台汇报,师根据生的汇报板书枝状图,同时帮助生在此环节理解“至少”和“保证”的含义。

师小结:4个球,有两种不同的测量方法,但测量的结果都是一样的,至少需要2次才能保证找出次品。

把结果记录在表格中。

师:如果只测量一次,最多可以保证在几个球中找出次品?

5.讨论9个球

【课件:这儿有9个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】

师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?

【小组活动要求如下。(1)请同学们用学具摆一摆,试试看,有几种不同的方法。(2)9个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)哪种方法符合题目中的“至少”和“保证”? 】

生在实物展台上汇报9个球的测量方法,师板书在黑板上。

生可能出现的方法如下。

引导学生观察、比较板书,哪种方法符合题意?

师:为什么把9个球分成(3,3,3)只要2次就可以找出次品?

引导学生发现:第一种方法每份分出的数量是3,次品一定在某一份的3个球里,不管是哪一份,3个球只需要一次就只可以找出次品来,所以9个球只需要2次;但第二种分法有2份分出的数量是4,4个球需要2次才能找出次品,9个球就需要3次才能保证找出次品。

师:如果球的数量在9以内,你们觉得每份分出的数量是3好还是4呢?分的时候要注意什么?

引导学生发现:每份分出的数量不能超过3。

6.5~8个球的研究

师(出示记录表):4个球只需要2次可以保证找出次品,9个球也只需要2次就能保证找出次品来,那么大胆猜测一下,在4与9之间的5、6、7、8个球至少需要几次就能找出次品呢?

请生自由画图分析,然后汇报。(重点是8个球。)

将研究结果填入表格中。

(三)巩固应用,发现规律

1.10个球的研究

师:10个球,称2次还能保证找出次品吗?

请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)

师将结果填入记录表。

师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)

2.3次最多能在多少个球中找出次品?

师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)

师:28个球至少几次可以找出次品?

3.4次最多能在多少个球中找出次品?

(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)

4.观察记录表,发现规律

师:我们来仔细观察记录表,5次、6次分别能保证在多少个球中找到次品?最多多少个?

师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。

(四)总结提升

师:今天这节课你们有什么收获?还有什么问题吗?

师:我们为什么要探究找次品?

师:我们所探究出的找次品的方法其实和以前所探究的烙饼问题、田忌赛马问题等一样,就是一个最优化的方法。生活中解决问题的方法很多,如果你发现了解决问题的最佳策略,那么解决问题时一定能够事半功倍!

《《找次品》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式