八年级上册数学知识点总结

时间:2026-01-29 08:00:06
八年级上册数学知识点总结

八年级上册数学知识点总结

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,让我们一起认真地写一份总结吧。我们该怎么写总结呢?以下是小编精心整理的八年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级上册数学知识点总结1

(有理数总可以用有限小数或无限循环小数表示)

一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)

一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

实数知识点

平方根:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

打好基础

数学基础包括基础知识和基本技能。基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。技能等等。只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。

注意新旧知识之间的联系

数学知识是初中的基础。学生可以合理地分配时间在初中复习这部分知识,同时学习新知识。新知识的学习通常是通过旧知识或以前学习知识的延续来引入的。因此,在学习数学的过程中,学生应注意接触新旧知识,巩固和提高对数学知识的掌握程度。

善于总结和整理

要想把数学学好的话,我们在学习之后,对于重点内容,我们一定要善于总结和整理,不断的强化记忆一下重点知识点。

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

高中数学学习方法

1怎么才能提高高考数学成绩

一、看课本补基础

基础很差,那就不要总想着有什么捷径,不要给自己找理由去偷懒,积累的过程从来就没有捷径,看课本补上基础,是一个缓慢但却最实际最靠谱的方法,特别是高三第一轮复习的时候,对于概念,公式,如何推导公式等一定要重点弄懂,还有每个知识点后面的例题,至于有同学会问那些课后习题需要做么?我觉得应该没有那么多时间,而且那些针对性也不强,毕竟有些必修课本是面向全部学生,没有分文理科的。

二、跟着老师步骤去看课本补基础

在第一轮复习的时候,很多同学会觉得很多知识点都不懂并且还会有不知从哪里去看课本好,这时老师复习节奏很重要,你就不要自己计划今天要复习课本哪里,第一轮复习可以跟着老师步骤,老师讲到哪,就去看这部分知识点的内容,具体按照上一步骤。

2提高高考数学成绩的技巧

背例题

这个是一个比较冷门但是效果奇好的提高数学成绩的方法。这个办法就是,遇到你不会的题目,如果怎么都做不出来,你就不用花时间弄懂它了,把它背下来,但是不要什么题都背,要背那种中等难度的题,高难的题一般以后也用不上,简单的你自己就会做。这样做一段时间,你会发现你节省了很多时间,遇到不会的题你也会往里面“套答案”了。

课后复习

高中数学一定要注意的'一点就是时效性,一定要在课后及时复习,这样做的原因就是如果你隔几天在看,你会发现你的知识点已经忘记的差不多了,这个时候你在复习,就产不多相当于又重新在学一次,所以“趁热打铁”这个成语同样适用于高中数学的学习。其次,我们复习过得知识也不是一劳永逸的,每周、每个月都最好总结一下。这样有利于形成我们的知识网络,更加方便记忆。

3提高高考数学成绩的窍门

仔细研读教材

对于高考的数学来说,高考的出题一直是源自教材的,所以在高三学生复习的过程中,需要认真阅读数学的教材,并且将教材中的知识、概念、例题、等知识点加以分析,在数学的知识点中,有很多知识点网络的交汇处是历年高考的高频考点,想要考好数学的学生可以将数学课本中的知识串成串,连成线,汇成面,并且将高考中出现的各个知识点加以练习并相互结合。

找到适合自己学习数学的方式

每个高三学生的学习情况都不一样,所以针对于他们的训练方式也不同。但是对于训练的目标有很多相同之处。所以在高三学生学习数学备考的时候应该合理安排训练。首先就需要高三学生弄清楚自己的需要,无论是数学的试卷还是专题,都需要自己一点一点来做。

并且弄清楚自己那些知识点存在着问题,就要多做一些此类知识点。其次就是要制定一个合理的目标,学习要为了自己的成绩而学,不是为了老师和家长而学习,在做题之前首先要制定一个目标,通过一些训练的方式来提高自己的数学做题的准确率。

八年级上册数学知 ……此处隐藏24009个字……

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、勾股定理:B直角三角形两直角边的平方和等于斜边的平方。

c数学式子:a

∠C=900a2b2c2

ACb

2、神秘的数组(勾股定理的逆定理):

222

如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形.数学式子:

a2b2c2∠C=900

满足a+b=c三个数a、b、c叫做勾股数。

3.一般的,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。

一个正数的平方根有两个,他们互为相反数。

0只有一个平方根,它是0本身。负数没有平方根。

一般的,如果一个数的立方等于a,那么这个数就叫做a的立方根,也称为三次方根。正数的立方根是正数,负数的立方根是负数,0的立方根是0.无限不循环小数称为无理数。有理数和无理数统称为实数。常见的无理数有:

⑴无限不循环小数:如……

⑵开不尽的根号:如3、5、34、37等

⑶圆周率:如、4、近似数的认识:

实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。

取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

例如,圆周率π=…

取π≈3,就是精确到个位(或精确到1)

取π≈,就是精确到十分位(或精确到)取π≈,就是精确到百分位(或精确到)取π≈,就是精确到千分位(或精确到)

5、有效数字:

对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

例如:上面圆周率π的近似值中,有3个有效数字3,1,4;

有4个有效数字3,1,4,2.等。

3第四章数量、位置的变化

数量、位置的变化、平面直角坐标系

1、数量的变化:

⑴生活中处处有变化的数量关系,并且这些变化的数量之间往往有一定的联系;感受用变化的观点分析数字信息的重要意义。

⑵实际问题中的数量常常会发生变化,表示这种变化通常有3种各具特色的表达方式表格、图形、式子,可根据实际情况灵活选用。

2、位置的变化:

现实生活中,人们既关心事物的数量变化,也关心事物的位置变化,如行驶中的车辆、飞行中的火箭、航行中的船只、移动中的台风等位置的变化。

3、平面直角坐标系:

⑴有关概念:平面上有公共原点且互相垂直的2条数轴构成平面直角坐标系,简称直角坐标系。水平方向的数轴称为x轴或横轴;竖直方向的'数轴称为y轴或纵轴。它们统称坐标轴。公共原点O称为坐标原点。

⑵确定点的位置(点坐标)

①若平面内有一点P(如图),我们应该如何确定它的位置?

(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,这样的有序实数对叫做点的坐标,可表示为P(a,b)

②若已知点Q的坐标为(m,n),该如何确定点Q的位置?

(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)

4、点坐标的特征:

⑴四个象限内点坐标的特征:

两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记作第一、二、三、四象限。

⑵数轴上点坐标的特征:

x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b)。

⑶象限角平分线上点坐标的特征:

第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);

第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a)。

⑷对称点坐标的特征:

P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)。

第五章一次函数

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。)注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:

(1)列表法

(2)图像法

(3)解析式法

七、正比例函数与一次函数的概念:

一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:

(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k

《八年级上册数学知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式