一次函数教学反思

时间:2025-12-07 21:18:06
一次函数教学反思

一次函数教学反思

作为一名人民教师,我们的任务之一就是教学,借助教学反思可以快速提升我们的教学能力,教学反思要怎么写呢?以下是小编帮大家整理的一次函数教学反思,仅供参考,大家一起来看看吧。

一次函数教学反思1

一次函数的应用教学反思:《一次函数的应用》这节课的教学内容是湘教版版八年级数学上册第二章第三节的内容。本节课讨论了一次函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的`思想。

具体分析本节课,首先简单的用几分钟时间回顾一下一次函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、价格这样的实际问题,通过在速度一定的条件下路程与时间的关系,总价在单价一定的情形下,总价与数量的关系这几个例题,认识到一次函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,如在建立一次函数模型进行预测的问题时,问学生:“你知道今年奥运会的撑杆跳高的记录是多少?你能对它进行预测吗?”,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关一次函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用一次函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的板书形式展示出来,在一定程度上也节省了时间。

一次函数教学反思2

本节课是在学生已经学会从单个一次函数的图象分析获取信息,进而解决有关实际问题的基础上展开的。因此,本节课的重点应该放在怎样从两个函数图象的比较、分析中提取有用信息,弄清两者之间的联系,从而提高学生的识图能力与解决实际问题的能力。难点在于怎样抓住有用的特征去分析、比较。于是,本节课的基本思路是以学生熟悉的一次函数的图象及性质为铺垫,以学生感兴趣的现实问题作素材,以交流合作为主要形式展开学习活动。

教学优点反思:

1、学生对本节课的浓厚兴趣不仅来源于极具现实意义的学习素材创设现实情境如:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量v(万米3)的关系中开放性的问题所给的暇想空间、处理引例时步步追问能紧扣思维脉博、

例1:某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系引伸的问题带来了挑战性的悬念。只有让学生在探索问题之中学会提出问题,才能最终体验到数学的抽象,形成稳定的学习兴趣。

2、本节课充分体现了学生在自主探索与合作交流中学会学习这一理念,学生有足够的.自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

3、本节课通过函数图象获取信息,解决实际问题,培养学生的形象思维及数学应用能力,同时培养学生良好的环保意识和热爱生活的意识及利用函数图象解决简单的实际问题通过方程与函数关系的研究,建立良好的知识联系。

教学缺点反思:

1、个别差生的积极性还未调动起来,还须探索出关注差生的方法来提高教学及格率。

2、在分析一次函数表达式时,在课本上用的“数形结合”方法可另外用“待定系数法”分析;以便学生能拓展思维。

反思二:一次函数图象的应用教学反思

通过函数图象获取信息,解决实际问题,初步接触“数形结合”思想,培养学生的形象思维及数学应用能力;通过方程与函数关系的研究,建立良好的知识联系;同时培养学生良好的环保意识和热爱生活的意识。成功之处在于让学生独立思考,给出解决问题的方法后,分享其他同学方法,比较后引出通过获取函数图象信息,解决实际问题即简单的“数形结合”思想。不足之处是对于方程与函数关系还欠缺练习巩固和课后作业。

反思三:一次函数图象的应用教学反思

数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,

总结

性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?

我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。

一次函数教学反思3

1、合理使用教材

教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问 ……此处隐藏5738个字……默不语,为什么?

反思:

一、教师既要站在学生的角度思考问题,也要从教师的角度考虑安排每堂课的整体设计。站在学生角度思考问题,教师就能够体察学生的所思所想,了解学生困惑的根源,教师就可以有针对性的调整教学设计。如上面中为什么学生都沉默不语?通过课后了解才知道他们不懂得抛物线=ax2和线段AB有一个交点是一个怎样的图像情形。根本原因是教师在备课中忽视了学生思考水平的现状和知识储备情况,导致教师用自己的思考代替了学生的思考,学生的思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习以及思考水平状况,善于启发和引导,才能较好的达到教学效果。

二、课要精讲,题要精练。教师在讲课时要抓住每节课的重点,把知识点讲透;设计习题时,要紧紧围绕知识点。除非是综合训练,忌多而乱。上述问题一就反映了前期基础知识不扎实。关于《二次函数与一次函数的综合应用》课中,我共选了三道题,虽然完成了教学任务,但学生对每一道题的理解不够透彻,没有时间把题拓展,如,抛物线=ax2与线段有两个交点时,a的取值范围又怎样呢?所以,教师既要精讲也要带领学生精练,把知识点弄透,同时,在教新课前也要在教学设计时把基础知识复习融入到题中,这样既复习了基础知识又有利于学生分析和理解,体现了学生的“最近发展区”。

一次函数教学反思12

一、满意之笔

1、对于这节复习课,我尝试着把相关的概念,以习题的形式呈现在学生面前,使学生自觉地动脑、动手、动口,全身心地投入学习活动中,在练习中加深对概念的认识和理解,在理解的基础上,提高运用概念分析、解决问题的能力。这就是基本概念习题化。这样既做到了以学生为主体,也使复习课不在枯燥乏味。

2、在一次函数与反比例函数的复习中,我抓住两条联系主线:

一是函数性质与图象的联系(数与形的结合),

二是函数与方程、不等式的联系。这既是解决函数有关问题的方法,也是学会函数的关键。

二、遗憾之处

1、时间把握不准。由于我在原教材的基础上加宽了知识点的面,拓展了知识点的深度,个别环节还需要小组活动,而我又想将这所有的内容在一节课内完成,似乎太高估了自己和学生的.能力,使整节课现的手忙脚乱。

2、观念还没有彻底改变。教师自问自答的现象时有发生,不舍得给学生充分的思考时间。这也表现在小组讨论时的时间过短,不能展开讨论,使之流于形式。

一次函数教学反思13

通过教学活动,充分体现了学生自主、合作、探究的学习方式。重视学生的数学学习过程和他们的个性体验,充分让学生体会数学源于生活中的`实际问题,又应用于生活。突出人人学有价值的数学的思想。帮助学生在学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。给学生充分思考的空间和时间。让学生自已互相学习,形成互动的局面。互相评价、互相尊重和互相信任。在一种和谐、热烈讨论的气氛中进步成长,从而激发学生的学习兴趣。但在如何把握好时间,使教学紧凑一些,增大教学容量,教学灵活选用各个教学环节还不够。

一次函数教学反思14

用函数的观点看方程,是学生应该学会的一种数学思想方法。

本节课从解具体的一元一次方程与当自变量x为何值时一次函数的值为0这两个问题入手,通过观察、探究,发现这两个问题实际上是同一个问题,进而得到解方程kx+b=0与求自变量x为何值时,一次函数y=kx+b的值为0的关系,并通过观察函数图象确认了这个问题在函数图象上的反映。从而,归纳总结得出了用一次函数的观点求解一元一次方程的方法。

虽然前面有了学习一元一次方程和一次函数的基础,但是学生不会想到将一次函数与一元一次方程联系起来,所以从“数”和“形”两方面理解二者之间的关系,进一步将“数”和“形”结合起来,对学生来说仍然是个难点。

为了进一步理解二者之间的关系,通过一次函数来求解一元一次方程,我在得出结论后,设计了一系列的习题进行加深巩固,题目设计由易到难,由“数”到“形”,层层递进,便于学生理解掌握。在完成题目的过程中,注意规范学生的解题格式,以及解题过程的完整性,进一步渗透数形结合的思想以及函数观点看方程的思想。经历了这些练习后,同学们可以更熟练地掌握通过函数求解一元一次方程的方法。虽然用函数解决方程问题未必简单,但这种数形结合的思想在以后的学习过程中有着很重要的作用。

从课堂效果来看,大部分同学可以用函数的观点来认识一元一次方程,用函数的方法来求解一元一次方程。个别同学在自己通过画图象来求解一元一次方程上还有一定困难,理解上不是很到位,还需要教师进一步的指导落实。本节课在时间安排上还有所欠缺,前面引导探究得出结论的过程用时过多,导致后面巩固练习中的最后一题没有完成,以后在教学中要注意各环节的`时间安排,尽可能的合理一些。

除此之外,本节课还有很多不足之处,比如学生上课回答问题的积极性不够高,举手的比较少,使得课堂气氛没有达到最好的效果。但是,所有的不足也在提醒我在以后的工作中还要不断地改进,以便在以后的教学中做得更好!

一次函数教学反思15

学习目标:

1. 使学生初步理解二元一次方程与一次函数的关系

2. 能根据一次函数的图像求二元一次方程组的近似值

3. 能解二元一次方程组的方法求两条直线的交点坐标

学习重点:

1. 用作图像法求二元一次方程组的近似值

2. 用解二元一次方程组的方法求两条直线的交点坐标

学习难点:

1. 做图像时要标准、精确,近似值才接近

2. 解二元一次方程组时计算准确,方法适宜

学习方法:

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。

(2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗?

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的.图像与一次函数y=5-x的图像相同吗?

(5)由以上的探究过程,你发现了什么?

问题2.(1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标?

(2)一次函数y=5-x和y=2x-1的交点坐标与方程 组 的解有什么关系?你能说明理由吗?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用 法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1) 用做图像的方法解方程组

(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点

《一次函数教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式