交集并集教案

时间:2026-02-06 08:00:07
交集并集教案

交集并集教案

作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?下面是小编精心整理的交集并集教案,欢迎大家借鉴与参考,希望对大家有所帮助。

交集并集教案1

教学目标:

(1)理解交集与并集的概念;

(2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合;

(3)能用图示法表示集合之间的关系;

(4)掌握两个较简单集合的交集、并集的求法;

(5)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;

(6)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯.

教学重点:交集和并集的概念

教学难点:交集和并集的概念、符号之间的区别与联系

教学过程设计

一、导入新课

【提问】

试叙述子集、补集的概念?它们各涉及几个集合?

补集涉及三个集合,补集是由一个集合及其一个子集而产生的第三个集合.由两个集合产生第三个集合不仅有补集,在实际中还有许多其他情形,我们今天就来学习另外两种.

回忆.

倾听.集中注意力.激发求知欲.

巩固旧知.为导入新课作准备.

渗透集合运算的意识.

二、新课

【引入】我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察).

【设问】

1.第一次看到了什么?

2.第二次看到了什么

3.第三次又看到了什么?

4.阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集A 、集B元素有何关系?

【介绍】这又是一种由两个集合产生第三个集合的情况,在今后学习中会经常出现,为方便起见,称集A与集B的公共部分为集A与集B的交集.

【设问】请大家从元素与集合的关系试叙述文集的概念.

【助学】“且”的含义是“同时”,“又”.

“所有”的含义是A与B的公共元素一个不能少.

【介绍】集合A与集合B的交集记作.读做“ A交B ”?

【助学】符号“ ”形如帽子戴在头

上,产生“交”的感觉,所以开口向下.切记该符号不要与表示子集的符号“ ”、“ ”混淆.

【设问】集A与集B的交集除上面看到的用图示法表示交集外,还可以用我们学习过的哪种方法表示?如何表示?

【设问】与A有何关系?如何表示?与B有何关系?如何表示?

【随练】写出,的交集.

【设问】大家是如何写出的?

我们再看下面的图.

【设问】

1.第一次看到了什么?

2.第二次除看到集B和外,还看到了什么集合?

3.第三次看到了什么?如何用有关集合的符号表示?

4.第四次看到了什么?这与刚才看到的集合类似,请用有关集合的符号表示.

5.第五次同学看出上面看到的集A 、集B 、集、集、集,它们都可以用我们已经学习过的集合有关符号来表示.除此之外,大家还可以发现什么集合?

6.第六次看到了什么?

7.阴影部分的周界是一条封闭曲线,它的内部(阴影部分)表示一个新的集合,试问它的元素与集A集B的元素有何关系?

【注】若同学直接观察到,第二、三、四次和第五次部分观察活动可不进行.

【介绍】这又是由两个集合产生第三个集合的情形,在今后学习中也经常出现,它给我们由集A集B并在一起的感觉,称为集A集B的并.

【设问】请大家从元素与集合关系仿照交集概念的叙述方法试叙述并集的概念?

【助学】并集与交集的概念仅一字之差,即将“且”改为“或”.或的含义是集A中的所有元素要取,集B中的所有元素也要取.

【介绍】集A与集B的并集记作(读作A并B).

【助学】符号“ ”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“ ”混淆,更不能与“ ”等符号混淆.

观察.产生兴趣.

答:图示法表示的集A.

答:图示法表示集B.集A集B的公共部分?

答:公共部分出现阴影.

倾听.观察

思考.答:该集合中所有元素属于集合A且属于集合B.

倾听.理解.

思考.答:由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集.

倾听.记忆.

倾听.兴趣记忆.

思考:“列举法还是描述法?”答:描述法.

思考.议论.

口答结合板书.

想象交集的图示,或回忆交集的概念.

口答结合板书:是A的子集.A.是

B的子集.

口答结合板书.

口答:从一个集合开始,依次用其每个元素与另一个集合中的元素对照,取出相同的元素组成的集合即为所求.

答:图示法表示的集A.

答:集A中子集A交B的补集.

答:上述区域出现阴影.

口答结合板书

答:出现阴影.

口答结合板书

认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合.

答:出现阴影.

思考:答:该集合中所有元素属于集合A或属于集合B.

倾听,理解.

回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的`集合,叫做A与B的并集.

倾听.比较.记忆.

倾听,记忆.

倾听.兴趣记忆.比较记忆,.

直观性原则.多媒体助学.

用直观、感性的例子为引入交集做铺垫.

渗透集合运算意识.

直观的感知交集.

培养从直观、感性到理性的概括抽象能力.

解决难点.

兴趣激励.比较记忆

培养用描述法表示集合的能力.

培养想象能力.

以新代旧.

突出重点.

概念迁移为能力.

进一步培养观察能力.

培养观察能力

以新代旧.

培养整体观察能力.

培养从直观、感性到理性的概括抽象能力.

解决难点.比较记忆.

兴趣激励,辩易混.比较 ……此处隐藏4018个字…….

集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:

师:请同学们将上述两组实例的共同规律用数学语言表达出来.

学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.

例2设集合A={x|–1<x<2},集合B={x|1<x<3},求A∪B.

例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.

例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.

师:求并集时,两集合的相同元素如何在并集中表示.

生:遵循集合元素的互异性.

师:涉及不等式型集合问题.

注意利用数轴,运用数形结合思想求解.

生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.

固化概念

提升能力

探究性质①A∪A=A,②A∪=A,③A∪B=B∪A,④∪B,∪B.

老师要求学生对性质进行合理解释.培养学生数学思维能力.

形成概念自学提要:

①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

②交集运算具有的运算性质呢?

交集的定义.

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

即A∩B={x|x∈A且x∈B}

Venn图表示

老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的`性质.

生:①A∩A=A;

②A∩=;

③A∩B=B∩A;

④A∩,A∩.

师:适当阐述上述性质.

自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.

应用举例例1(1)A={2,4,6,8,10},B={3,5,8,12},C={8}.

(2)新华中学开运动会,设

A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.

例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.

例1解:(1)∵A∩B={8},∴A∩B=C.

(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};

(2)直线l1,l2平行可表示为

L1∩L2=;

(3)直线l1,l2重合可表示为

L1∩L2=L1=L2.提升学生的动手实践能力.

归纳总结并集:A∪B={x|x∈A或x∈B}

交集:A∩B={x|x∈A且x∈B}

性质:①A∩A=A,A∪A=A,②A∩=,A∪=A,③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结

老师点评、阐述归纳知识、构建知识网络

课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华

备选例题

例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.

【解析】法一:∵A∩B={–2},∴–2∈B,∴a–1=–2或a+1=–2,解得a=–1或a=–3,当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.

当a=–3时,A={–1,10,6},A不合要求,a=–3舍去

∴a=–1.

法二:∵A∩B={–2},∴–2∈A,又∵a2+1≥1,∴a2–3=–2,解得a=±1,当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.

当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.

例2集合A={x|–1<x<1},B={x|x<a},(1)若A∩B=,求a的取值范围;

(2)若A∪B={x|x<1},求a的取值范围.

【解析】(1)如下图所示:A={x|–1<x<1},B={x|x<a},且A∩B=,∴数轴上点x=a在x=–1左侧.

∴a≤–1.

(2)如右图所示:A={x|–1<x<1},B={x|x<a}且A∪B={x|x<1},∴数轴上点x=a在x=–1和x=1之间.

∴–1<a≤1.

例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立?

【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.

由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.

当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.

当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.

例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.

【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.

当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.

当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.

当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.

综上所述,x=–3且A∪B={–8,–4,4,–7,9}.

《交集并集教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式